August 14, 2015
library(choroplethr) library(choroplethrMaps) data(df_state_demographics) names(df_state_demographics)
## [1] "region" "total_population" "percent_white" ## [4] "percent_black" "percent_asian" "percent_hispanic" ## [7] "per_capita_income" "median_rent" "median_age"
kable(head(df_state_demographics))
region | total_population | percent_white | percent_black | percent_asian | percent_hispanic | per_capita_income | median_rent | median_age |
---|---|---|---|---|---|---|---|---|
alabama | 4799277 | 67 | 26 | 1 | 4 | 23680 | 501 | 38.1 |
alaska | 720316 | 63 | 3 | 5 | 6 | 32651 | 978 | 33.6 |
arizona | 6479703 | 57 | 4 | 3 | 30 | 25358 | 747 | 36.3 |
arkansas | 2933369 | 74 | 15 | 1 | 7 | 22170 | 480 | 37.5 |
california | 37659181 | 40 | 6 | 13 | 38 | 29527 | 1119 | 35.4 |
colorado | 5119329 | 70 | 4 | 3 | 21 | 31109 | 825 | 36.1 |
dfstatemedrent=df_state_demographics[,c(1,8)] # Median Rent colnames(dfstatemedrent)=c("region","value") state_choropleth(dfstatemedrent, title="Median Rent by State")
data("df_county_demographics") #names(df_county_demographics) # Federal Information Processing Standard (FIPS) https://en.wikipedia.org/wiki/FIPS_county_code kable(head(df_county_demographics))
region | total_population | percent_white | percent_black | percent_asian | percent_hispanic | per_capita_income | median_rent | median_age |
---|---|---|---|---|---|---|---|---|
1001 | 54907 | 76 | 18 | 1 | 2 | 24571 | 668 | 37.5 |
1003 | 187114 | 83 | 9 | 1 | 4 | 26766 | 693 | 41.5 |
1005 | 27321 | 46 | 46 | 0 | 5 | 16829 | 382 | 38.3 |
1007 | 22754 | 75 | 22 | 0 | 2 | 17427 | 351 | 39.4 |
1009 | 57623 | 88 | 1 | 0 | 8 | 20730 | 403 | 39.6 |
1011 | 10746 | 22 | 71 | 0 | 6 | 18628 | 276 | 39.6 |
dfcountymedrent=df_county_demographics[,c(1,8)] colnames(dfcountymedrent)=c("region","value") county_choropleth(dfcountymedrent, title="Median Rent by County")
library(choroplethrZip)#devtools::install_github("arilamstein/choroplethrZip") #Zip Code Tabulation Areas are generalized area representations of the United States Postal Service (USPS) ZIP code service areas library(ggplot2) data("df_zip_demographics") kable(head(df_zip_demographics))
region | total_population | percent_white | percent_black | percent_asian | percent_hispanic | per_capita_income | median_rent | median_age |
---|---|---|---|---|---|---|---|---|
00601 | 18450 | 1 | 0 | 0 | 99 | 7380 | 285 | 36.6 |
00602 | 41302 | 4 | 0 | 0 | 94 | 8463 | 319 | 38.6 |
00603 | 53683 | 2 | 0 | 0 | 96 | 9176 | 252 | 38.9 |
00606 | 6591 | 0 | 0 | 0 | 100 | 6383 | 230 | 37.3 |
00610 | 28963 | 1 | 0 | 0 | 99 | 7892 | 334 | 39.2 |
00612 | 68055 | 0 | 0 | 0 | 100 | 10188 | 315 | 38.5 |
dfzipmedrent=df_zip_demographics[,c(1,8)] colnames(dfzipmedrent)=c("region","value") zip_choropleth(dfzipmedrent,state_zoom="washington")+coord_map() #adds mercator projection
zip_choropleth(dfzipmedrent, county_zoom=53063) + coord_map()
thingstodo=read.table(text=" Attraction lat lon Population Jepson 47.667268 -117.405114 45 Starbucks 47.669088 -117.396847 50 WSU 47.660960 -117.405697 250 EWU 47.661061 -117.404044 400",header=TRUE)
library(ggmap) whatislatlon=function(mydata,addressindata){ locs=geocode(as.character(unique(mydata[,addressindata]))) locs$address=unique(mydata[,addressindata]) mydata$latitude=locs$lat[ match(mydata[,addressindata],locs$address)] mydata$longitude=locs$lon[ match(mydata[,addressindata],locs$address)] return(mydata) }
Address=c("502 E Boone Ave, Spokane, WA, 99258","502 E Boone Ave, Spokane, WA, 99258") mydummydata=data.frame(Address=Address) mysmartdata=whatislatlon(mydummydata,"Address") kable(mysmartdata)
Address | latitude | longitude |
---|---|---|
502 E Boone Ave, Spokane, WA, 99258 | 47.6683 | -117.403 |
502 E Boone Ave, Spokane, WA, 99258 | 47.6683 | -117.403 |
location=c(-117.402209,47.665330) map=get_map(location=location,maptype="roadmap",source="google",zoom=16) spokanemap=ggmap(map) print(spokanemap)
spokanemap=spokanemap+geom_point(data=thingstodo, aes(lon,lat,color=Attraction),size=5) print(spokanemap)
spokanemap+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text = element_blank(),axis.title = element_blank(), axis.ticks = element_blank())
routes=data.frame(x=thingstodo$lon,y=thingstodo$lat) newmap=get_googlemap(center=location,zoom=16, markers=routes, path = routes,scale=2,maptype = "satellite") ggmap(newmap,darken=.3)+geom_text(data=thingstodo,aes(lon,lat,label=Attraction), color="white",size=3)
leaflet
packageleaflet
JSlibrary(leaflet) #rstudio package leaflet() %>% addTiles()
leaflet() %>% addTiles()%>%addCircleMarkers(data=thingstodo)
leaflet() %>% addTiles()%>%addCircleMarkers(data=thingstodo,popup=~Attraction,radius=~Population*.05)
leaflet() %>% addTiles()%>%addMarkers(data=thingstodo,popup=~Attraction)
leaflet() %>% addTiles()%>%addMarkers(data=thingstodo,popup=~Attraction)%>% addPolylines(thingstodo$lon,thingstodo$lat)
Some cool stuff possible:http://147.222.28.7/INRUG-ShinyApp/